Fairness Versus Guaranteed Output Delivery in Secure Multiparty Computation

> Ran Cohen, Yehuda Lindell Bar Ilan University, Israel

Secure Multiparty Computation

- A set of parties wish to jointly and securely compute a function on their private inputs e.g., voting, auction, etc.
- Security must hold even if some of the parties attack the protocol

Secure Multiparty Computation

- What are the desired security properties?
 - **Correctness:** parties obtain correct output
 - **Privacy:** only the output is learned (nothing else)
 - Independence of Inputs: parties cannot choose their inputs based on inputs of other parties
 - Fairness: if one party learns the output then all parties learn the output
 - Guaranteed Output Delivery (G.O.D.): all parties learn the output

Fairness vs. G.O.D.

Fairness	G.O.D.
If one party obtains output then all parties obtain output	All parties obtain output

- Honest majority
 - Every f can be computed with fairness & G.O.D.
 [GMW87,RB89]

- No honest majority
 - Fairness & G.O.D. are not always possible [Cleve86]

- Always
 - G.O.D. \Rightarrow Fairness
- Two parties
 - Fairness \Rightarrow G.O.D.
 - In case of (fair) abort, the honest party computes the function locally to obtain output
 - The corrupted party does not learn anything

Folklore: Fairness ⇔ G.O.D.

Starting Point

- The broadcast functionality forms a separation between fairness and G.O.D.
- ▶ Can be computed with G.O.D. $\Leftrightarrow t < n/3$ [PSL80,LSP82]
- Can be computed with fairness $\forall t < n$ [FGHHS02]
 - 1) Compute PKI every party can abort
 - 2) If abort, fairness is retained no party learns anything
 - 3) Else, run authenticated broadcast using the PKI
- However, broadcast is an atypical functionality
 - There is no meaning to privacy
 - Given a secure setup there is no need for cryptography Can be computed $\forall t < n$ information theoretically [PW92]

Summary of the Results

# Corrupted	Broadcast	P2P
	Fairness & G.O.E	D. [GMW87,RB89]
		F ∃f w ∃f w Fairness Fairness
	Fairness ⇔ G.O.D.	w/o & in C G.O.D. G.O.D.
	Fairness w Broadcast ⇔ Fairness w/o Broadcast Fail-Stop: Fairness ⇔ G.O.D.	

Our Results

Outline

- Some definitions
- Fairness & Broadcast
- Fairness \Rightarrow G.O.D.
- G.O.D. & Broadcast
- Conditions for Fairness \Rightarrow G.O.D.
 - Fairness & Broadcast \Rightarrow G.O.D.
 - Fail-Stop: Fairness \Rightarrow G.O.D.

Real/Ideal Paradigm

The security definition compares two worlds

Real World

- Authenticated synchronous network
- Consider either P2P model or broadcast model

Ideal World

Trusted party helps computing f

Real/Ideal Paradigm

 \forall real $\mathcal{A} \exists$ ideal \mathcal{S} s.t. the outputs are indistinguishable

Security of MPC

- Different ideal worlds provide different security:
 - Security with G.O.D.
 - Security with Fairness
 - Security with Fairness and Identified Abort
 - Security with Abort
 - Security with Identified Abort

Security with G.O.D.

- 1. Parties send input to \mathcal{T}
- 2. T replaces invalid inputs with default
- *3. T* sends output to parties

Security with Fairness

- 1. Parties send input to \mathcal{F}
- 2. If \mathcal{T} received abort, send \perp to parties
- 3. Otherwise, \mathcal{T} sends output to parties
- 4. Fairness with identified abort: \mathcal{A} can send $(abort, i^*)$ and parties output (\bot, i^*)

Outline

- Some definitions
- Fairness & Broadcast
- Fairness \Rightarrow G.O.D.
- G.O.D. & Broadcast
- Conditions for Fairness \Rightarrow G.O.D.
 - Fairness & Broadcast \Rightarrow G.O.D.
 - Fail-Stop: Fairness \Rightarrow G.O.D.

Fairness & Broadcast

Fairness in broadcast model ⇔ Fairness in P2P model

- Given a fair protocol π for f in broadcast model
- Protocol with fairness for f in P2P model:
 - 1) Compute PKI with abort as in [FGHHS02]
 - 2) Run π and replace every broadcast call with authenticated broadcast
- Step (1) is independent of the inputs, so every abort is fair
- Every abort in Step (2) is fair because π is fair

Outline

- Some definitions
- Fairness & Broadcast
- Fairness \Rightarrow G.O.D.
- G.O.D. & Broadcast
- Conditions for Fairness \Rightarrow G.O.D.
 - Fairness & Broadcast \Rightarrow G.O.D.
 - Fail-Stop: Fairness \Rightarrow G.O.D.

Separating Fairness & G.O.D.

Goal: $\exists f \text{ non-trivial with Fairness without G.O.D.}$

- Recall: Broadcast with G.O.D. in P2P $\Leftrightarrow t < n/3$
- Idea: find non-trivial f that
 - Can be computed with fairness in P2P model
 - If can be computed with G.O.D. then broadcast exists
 - No broadcast \Rightarrow *f* cannot be computed with G.O.D.
- Three-party majority
 - $f_{maj}(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \oplus x_2))$
- Fair in broadcast model [GK09] \Rightarrow Fair in P2P model
- ▶ Non-trivial: 3-party $f_{maj} \Rightarrow$ 2-party OT [Kilian91]

f_{maj} with G.O.D. \Rightarrow Broadcast

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with \mathcal{T} :
 - **1**. Sender sends $x \in \{0,1\}$ to all parties
 - 2. Each party sends its value to \mathcal{T}
 - **3**. Each party gets $y \in \{0,1\}$ from \mathcal{T}
 - 4. Sender outputs *x*, receivers output *y*

f_{maj} with G.O.D. \Rightarrow Broadcast

- Intuition for the proof:
 - Corrupted receiver: can send another bit to \mathcal{T} This doesn't affect the output of f_{maj}
 - Two corrupted receivers: can determine the value *y* This doesn't affect the sender (always outputs *x*)
 - Corrupted sender: can send different bits This doesn't affect consistency of receiver's output
 - Corrupted sender & receiver: no affect on honest receiver

Separating Fairness & G.O.D.

- ▶ f_{maj} is fair without G.O.D. in P2P model $\forall t < 3$ ▶
- We present a sufficient condition for function f to satisfy that f with G.O.D. ⇒ broadcast
- ▶ 256 functions $f: \{0,1\}^3 \rightarrow \{0,1\}$
 - t = 1 : 110 imply broadcast \Rightarrow fair without G.O.D.
 - t = 2 : 8 are fair without G.O.D.

Outline

- Some definitions
- Fairness & Broadcast
- Fairness ⇒ G.O.D.
- G.O.D. & Broadcast
- Conditions for Fairness \Rightarrow G.O.D.
 - Fairness & Broadcast \Rightarrow G.O.D.
 - Fail-Stop: Fairness \Rightarrow G.O.D.

G.O.D. & Broadcast

- [GK09] compute f_{maj} & f_{OR} in broadcast model
- f_{maj} cannot be computed with G.O.D. in P2P model
- Is broadcast needed to compute every f with G.O.D?
- No Multiparty Boolean OR $f_{OR}(x_1, ..., x_n) = x_1 \vee \cdots \vee x_n$
- Can be computed with G.O.D. in P2P model
- Reason:
 - Fair in P2P model (since fair in broadcast model)
 - Every party can force the output to be 1

G.O.D. Without Broadcast

- Consider \mathcal{T} that computes f_{OR} with fairness •
- Protocol for f_{OR} with G.O.D. in P2P model & T:
 - **1**. P_i sends x_i to \mathcal{T}
 - *2.* P_i receives y/\perp from \mathcal{T}
 - 3. If $y \neq \perp P_i$ outputs y, else P_i outputs 1

G.O.D. Without Broadcast

- Intuition for the proof:
 - $\circ\,$ If ${\cal A}$ aborts the protocol, honest parties output 1
 - \circ In this case, ${\cal S}$ sends 1 as input in the ideal world
- This idea works for functions where each party can force the output to be some default output

Fairness & Default Output \Rightarrow G.O.D.

G.O.D. Without Broadcast

- ▶ f_{OR} has G.O.D. in P2P model $\forall t < n$
- ▶ 256 functions $f: \{0,1\}^3 \rightarrow \{0,1\}$
 - 16 are fair with default output \Rightarrow G.O.D. (t < 3)

Outline

- Some definitions
- Fairness & Broadcast
- Fairness \Rightarrow G.O.D.
- G.O.D. & Broadcast
- Conditions for Fairness \Rightarrow G.O.D.
 - Fairness & Broadcast \Rightarrow G.O.D.
 - Fail-Stop: Fairness \Rightarrow G.O.D.

When Does Fairness \Rightarrow G.O.D.

Fairness & Identified Abort \Rightarrow G.O.D.

- Recall Fairness & Identified Abort: If A aborts:
 - $\circ \mathcal{A}$ does not learn any new information
 - Honest parties learn an identity of a corrupted party
- From fairness & id-abort to G.O.D.
 - 1) Run the fair protocol
 - 2) If abort, eliminate a corrupted party and repeat
 - 3) Else, obtain output and halt
 - Termination after at most t + 1 iterations

Details in the paper

Fairness & Broadcast \Rightarrow G.O.D.

- Use GMW compiler with a tweak
- From fairness to fairness & id-abort:
 - 1) Run π (a fair protocol)

Every message is proven using ZKP (over broadcast)

- 1) If P_i fails to prove a message to P_j the protocol resumes
- 2) When π completes:
 - Either all parties learn the output
 - Or all parties obtain \perp and identify a corrupted party
 - Broadcast : all parties can agree who is cheating

Fail-Stop: Fairness \Rightarrow G.O.D.

- Fail-Stop adversary: can stop sending messages
- From fairness to fairness & id-abort:
 - 1) Run π (fair against fail-stop)
 - 2) If P_i didn't send a message to P_j the protocol resumes
 - 3) When π completes:
 - Either all parties learn the output
 - Or all parties obtain \perp and P_j identifies P_i as corrupted
 - 4) Fail-stop: P_j cannot falsely accuse P_i

Summary

- Fairness vs. G.O.D.:
 - Fairness ⇔ G.O.D. in P2P model
 - Fairness \Leftrightarrow G.O.D. in broadcast model
 - Fairness \Leftrightarrow G.O.D. for default output functionalities
 - Fairness \Leftrightarrow G.O.D. for fail-stop adversaries
- Role of Broadcast:
 - Fairness in broadcast model \Leftrightarrow Fairness in P2P model
- Open questions
 - When Fairness \Rightarrow G.O.D.
 - Old: characterize Fairness New: characterize G.O.D.